INTRODUCTION

The city of Tallinn still holds many surprises in the field of archaeology. New information is added nearly each year not only about the medieval town and its inhabitants but also about the earlier periods. There is also much to discover regarding the Early Modern and Modern period, especially outside the town core, due to the lack of written sources or accurate historic maps. This was a case in 19th century suburbs of Tallinn at the intersection of C. R. Jakobsoni and J. Kunderi streets (Fig. 1) where the Modern period cultural layer and buildings, Early Modern period burial site and beneath them, under over a metre thick sand dune, a cultural layer of a settlement site and an ancient field (Fig. 2) were recently discovered.
There are no written records or historic maps portraying the settlement site or burial ground located between the J. Kunderi and Fr. R. Kreutzwaldi streets in Tallinn. During the 17th century the surrounding areas were probably used for farming or as a grassland. A small stream north of the site and a road – today’s Tartu Road – are shown on a map from 1688 (RA, EAA.1.2.C-III-1). During the 19th century the land next to C. R. Jakobsoni street was divided into plots and fast building began. On a map from 1849 we can see buildings being erected next to C. R. Jakobsoni street and military barracks by the Tartu Road (RA, EAA.1874.1.3545). In 1885 the eastern side of the C. R. Jakobsoni St. 13 plot is densely populated, while the western side was probably used for farming (RA, EAA.854.4.46). The many houses erected during the 19th and 20th century were finally demolished in 2007 (Kallas 2007).

The first information about a possible burial site comes from October 1935, when, during the construction of a water pipe leading to a nearby private school (now Fr. R. Kreutzwaldi St. 25), burials were found (Russow in prep., cat. no TLN1935.04; TLA 1147.1.30). It was hypothesized that these were the burials of Russian troops that laid siege to Tallinn during the Great Northern War in the beginning of the 18th century. A year later when digging a foundation ditch on the site of Fr. R. Kreutzwaldi St. 20 (presently J. Kunderi St. 14) more burials were found. In one of the burials the deceased had with him a Swedish Sigmund III coin, dating the burial to the 16th century (Russow in prep., cat. no TLN1936.06; TLA R-285.1.458). Over the years more human remains and burials were unearthed during the construction of nearby buildings. In 1962 and 1966 17th–19th century pottery and stove tiles were found at C. R. Jakobsoni street during earthworks indicating the presence of an Early Modern and Modern period cultural layer (Russow in prep., cat. nos TLN1962.12; TLN1966.18). It is probable that burials were also found during the construction of C. R. Jakobsoni St. 7 buildings, but

Fig. 2. The total area investigated during fieldwork in 2018. 1 – number of the burial, a – test pit no 1, b – test pit no 2, c – test pit no 3, d – construction no 1, e – construction no 2, f – construction no 3.

Drawing / Joonis: Raido Roog
archaeologists were not notified (Malve & Reppo 2018, 3). The burial site was rediscovered by Erki Russow in late 2016 when studying notes and papers of the 1930s heritage activities of several individuals at Tallinn City Archives.

Based on these reports of a possible burial site in the region preliminary research was carried out in 2017 on the site due to upcoming construction (Malve & Saage 2017), during which six burials and a well-preserved cultural layer of a settlement site were discovered. Under the cultural layer, in the natural soil, regular dark lines – ancient plough marks – were found. This discovery prompted a larger excavation during the spring and summer of 2018 (Malve et al. 2019). In this article we present the results of the excavation of the burial ground, partially uncovered Modern period buildings and preliminary research carried out on the settlement site and ancient field.¹

On the studied area foundations of late 19th and early 20th century buildings were found (Fig. 2, d–f). Around them were many large rubbish pits that had disturbed the foundations and the cultural layer of the settlement site and ancient field situated deeper below the sand dune.

The first construction found was a small square cellar, which was dug into the dune and partially disturbed the earlier cultural layer. The walls were laid out of cut limestone slabs, held together with grainy white lime mortar, and the floor was constructed out of a concrete slab lined with yellow bricks. The inside of the cellar was plastered. A thick cast iron pipe, probably part of the plumbing, was still present inside the southern wall. The walls were covered by a layer of debris consisting of red brick fragments, glazed and unglazed redware, stoneware, coloured glass and glassware fragments, animal bones, textiles and wood. When removing the concrete slab, it was obvious the cellar had partially been dug into the cultural layer beneath.

The second construction was a foundation of a larger residential building which was only half uncovered during fieldwork. Aside the outer wall made of cut limestone slabs a middle support wall, a cellar floor, chimney and stove bases were unearthed. Behind the residential building was an attached auxiliary building built of red bricks. The remaining cellar floor was situated next to the western outer wall and south of the middle support wall. It was laid out of granite slabs in a rhombus pattern and the tiles, as well as the middle support wall next to the floor, were worn smooth from use. South of the floor was a three metre long wooden log that ran in NW–SE direction. This was possibly some kind of a wooden wall or partition that separated the cellar and the auxiliary building. In the middle of the building were a chimney and stove bases. Next to the stove base a flue laid of red brick was found heading towards the chimney. All that had remained of the auxiliary building was the outer western wall, which was covered with thick plaster. While uncovering the foundation glazed and unglazed redware fragments, glass fragments, white clay pipe fragments and animal bones were found alongside a coin from the beginning of the 20th century. The whole foundation was built on top of the sand dune.

The third construction was found in the western part of the plot. It was also built out of limestone slabs, being about two metres wide and 0.75 metres high. The wall was dug into the sand dune during which burial no 9 was uncovered – the wall was laid right on top of the individual’s feet, damaging one of the remaining leather shoes and removing the left foot.

¹ The fieldwork of the lowest part of the cultural layer was carried out by Paul Ööbik (Agu EMS OÜ) in July–August 2018, the results of this excavation have been excluded from the present paper. They hypothesized that the sherds of pottery were possibly carried here with manure or were broken on site. Based on the finds they think the sherds originate from only a few vessels, which were ploughed across the field. The find density of 0.7 finds to m² seems to corroborate that. In addition, two medieval crossbow bolts were collected (Ööbik & Selin 2018).
Under the asphalt was a thick layer of demolition debris, probably from the buildings that were demolished in 2007, under which a sandy sooty cultural layer was found along with numerous rubbish pits. The layer contained mainly glazed or unglazed redware fragments, printed porcelain, coloured glass and glassware fragments, animal bones, stove tile and brick fragments, and different metal objects, among others several 19th and early 20th century customs seals (e.g. chief customs office of Tallinn). This layer also contained pieces of charcoal. This cultural layer probably originates from the same time as the foundations. The layer was in many places disturbed by large rubbish pits containing roughly the same type of finds as the layer itself, and in some cases had even disturbed the earlier cultural layer under the sand. Some of the rubbish pits could be dated to the same period as the buildings, but some pits had damaged the foundations and are from a later date.

BURIALS
During the rescue excavations at the burial site located at J. Kunderi and F. R. Kreutzwaldi streets in Tallinn, twelve partially or completely preserved burials were found. The graves had been damaged by later burials, and during later earthworks and constructions. The dead were laid in sand dunes. The sandy soil favoured the preservation of organic material. Lids, sides, and bases of the coffins were clearly observable. Coffin wood and nails were found in seven graves. 56 coffin nails were collected, most of which (25) were found with burial no 14. The coffins were basic rectangular plank coffins (Fig. 3) where the planks were held together by carpenter’s nails. All deceased were laid to rest in a supine position, head towards west (220°–270°). The position of the hands² was possible to determine in eight burials (nos 3, 7, 8, 9, 10, 12, 13 and 14): their hands were placed on the body. Most of the graves were single burials, but one collective burial with three adult males (nos 1–3) was also discovered. Although a few burials were in several layers, most were in a single layer, which indicates that the area was the outer edge of the cemetery and was used for only a short period of time.

Finds from the graves
During fieldwork, items were discovered from seven graves. Most were fragments of garments. Among the finds were also some pieces of jewellery, most of which were Orthodox copper alloy cross necklaces (burials no 7, 10, 12 and 14; Fig. 4). The cross was a very personal item that was worn all the time and was buried with the deceased (Štšogoleva 2012, 27). It is a find characteristic to Orthodox burials. Several similar crosses were found from the churchyard of the Church of the Kazan Icon of the Mother of God in Tallinn (Malve & Juus 2018, 40). Three types of cross necklaces were found, all of which were decorated in relief. The discovered cross necklaces were different types of the 17th to 18th century Orthodox crosses

² Determining the position of hands is based on schematics by Valk 2001, 69, fig. 53.
(Kolpakova & Kostuchuk 2017). Inside the heart shaped end of the cross necklace from burial no 14 a possible silk garment fragment was preserved (Fig. 4). Around the neck of a young woman (burial no 8) was a necklace made of lead buttons. This burial of a 14- to 18-year-old girl was the richest in items. Under the lower part of the back, the 1st lumbar vertebra, fragments of a 1.5 cm wide woolen ribbon, most likely from a belt, were found. Hair under the nape was preserved, some of it woven in a braid of which a 15 cm long part was preserved. A light patterned silk ribbon and a few textile fragments were tied around the braid. On top of the distal part of the right tibia seven 1.3 cm wide fragments of a woolen textile were found.

During the preliminary research, atop of the head of the coffin a sword (Fig. 5) with wood from the coffin lid stuck to the blade was found. The sword is most likely a double-edged Russian dragoon sabre dating from the first half of the 18th century. The handle of the sword was carved of wood and had a twisted copper alloy wire wrapped around it. The pommel and guard were also of copper alloy. The guard was heart-shaped and bore the initials of the maker of the sword ‘DC’ (Russian ‘ДС’).

Under the right ilium of burial no 9, a decorated copper alloy button and some textile were found. Around the right foot was a leather boot with a copper alloy buckle (Fig. 6). The heel of the boot was fastened with nails. The corrosion from the buckle had preserved some of the shavings on the bottom of the coffin. These were the shavings from the making of the coffin. Placing the leftovers into the coffin under the dead body was a widespread custom (Malve et al. 2012, 202). Based on the design, the boot dates from the 17th to the 18th century. In addition, a child’s left boot was discovered when excavating burial no 14.

³ Pers. comm. Jaak Mäll (SALM).
An extraordinary find was discovered in the collective burial: a chained shackle (Fig. 7) was locked around the lower part of an adult male’s (no 3) tibia. This is a clear indication that the man had been a prisoner. It is possible that the rest of the dead in the collective burial were also prisoners.

Skeletons

Of the twelve skeletons only three were complete (Table 1). The rest had been damaged by various earthworks. The bones were in good condition; there was little erosion and some mechanical damage. The sandy soil favoured also the preservation of hair that was present in two burials (nos 8 and 14). In both cases the hair was braided (Fig. 8).

The skeletons presented mostly with dental pathologies. Teeth were preserved in nine skeletons (203 teeth altogether). The most prevalent dental pathology was dental calculus (seven burials), followed by dental enamel hypoplasia (six burials) and dental caries (five burials). Less common were alveolar reduction (four individuals), ante mortem tooth loss and periapical lesions (both present in three individuals). Skeletons (nos 7 and 13) presented with all of the abovementioned dental pathologies. One woman aged 18 to 25 years presented with impacted mandibular canines. Dental growth anomaly was also present in burial no 8.

The most prevalent skeletal pathology was intraosseous disk herniation or Schmorl’s nodules (burials no 1, 2, 3, 4, 9 and 11) that are most likely the result of hard labour at a young age. Schmorl’s nodules were observed on the thoracic (T6–T12) and first lumbar vertebrae (L1–L3) of six skeletons. Spondylosis or age-related degeneration of the vertebral column was observed on thoracic and lumbar vertebrae in five burials (burials no 1, 2, 4, 13 and 14), both in males and females. The skeletons were mostly middle aged or older; one younger, 25- to 35-year-old male also presented with peripheral osteophytes indicative of hard labour at a young age.

Similarly to other archaeological populations, periostitis was present (burials no 12, 13 and 14), mostly on the tibiae and fibulae (burials no 12 and 14) and in burial no 14, also on

1 The sex of the burials was determined according to the morphological traits on the pelvis and cranium (Bukstra & Ubelaker 1994, 16–20) and the maximum length of the long bones (Garmus & Jankauskas 1993, 6–8) and tarsal bones (Garmus 1996, 2). The age at death was determined according to wearing of the teeth (Brothwell 1981, 72), pubic symphyseal face (Todd 1920; 1921; Brooks & Suchey 1990) and age caused changes on the limb joints (Ubelaker 1989, 84–87). The age of subadults was determined by examining the development and eruption of the teeth (Ubelaker 1989, 63) and the epiphyseal fusion of the long bones (Schaefer et al. 2009). Pathological conditions were identified with the aid of Ortner & Putschar (1985) and Roberts & Manchester (2012). On teeth the degree of dental calculus and alveolar reduction was estimated (Brothwell 1981, 155 and Fig. 6.14 a, b). Stature was calculated according to the formula of Trotter and Gleser (Trotter 1970) using measurements of the right femora.

6 T – thoracic vertebrae; L – lumbar vertebrae.
femora. It is a non-specific infection caused by bacteria, systemic disease, or a minor trauma (Connell & Miles 2010, 44).

Healed fractures were observed in two adult males. A 25- to 35-year-old (burial no 13) presented with healed fractures on the body of the right 11th rib and of the distal part of the left 1st metacarpal. Skeleton no 3, buried with a shackle, had a healed trauma on the distal part of the right 1st metacarpal. The injuries on the hand of both skeletons could be indicative of a fist fight or could have also been the results of work accidents. No perimortem injuries were observed in any of the skeletons.

A 14 to 18-year-old (burial no 8) presented with scoliosis of the thoracic vertebra caused by a developmental disorder of the vertebral column. Part of the 6th thoracic vertebra had not developed and therefore a semi-segmental hemivertebra was present (Fig. 9). The left part of the vertebra was missing, resulting in the spinal sideways curve. The ossification of a vertebra starts from two ossification centres and a hemivertebra is the result of one of the two not appearing (Aufderheide & Rodriguez-Martin 1998, 64). Scoliosis is the result of asymmetry that causes the vertebral column to become imbalanced (ibid.)

During the fieldwork, 330 human bones or bone fragments were collected from the soil mixed by earlier earthworks. One adult male skull without the mandible was also found (Fig. 10). The cap of the skull had been removed with a saw: a craniotomy had been conducted. The cap had been removed quite close to the orbits and base of the skull; almost all of the parietal bones and most of the occipital and frontal bones had been removed. The cut traversed only the squama of the temporal bones. The width of the cut was approximately 3 mm. It was located slightly higher on the right side of the skull and slightly lower on the left side. The starting point of the cut was most likely the upper part of the squama of the right temporal bone. The frontal bone had been cut slightly diagonally: approx. 45 mm above the right and 37 mm above the left orbit. The occipital bone was halved 13 mm below the external occipital protuberance. The left side of the skull was cut with a single horizontal cut that ended on the right side of the occipital squama. Cranial vault was then removed by breaking off the 10 mm wide uncut section just before the lambda suture. After that another 26-mm-long cut was made. The second 10-mm-wide uncut section of the parietal bone was also then broken apart. The uniform manner in which the cap has been removed indicates an experienced practitioner. The cause for the craniotomy was most likely to investigate the man’s cause of death.

Fig. 9. Scoliosis caused by a hemivertebra observed on the thoracic vertebrae of a 14 to 18-year-old (burial no 8).
Photo / Foto: Janika Viljat
CULTURAL LAYER OF THE MEDIEVAL SETTLEMENT SITE AND PLough MARKS

The cultural layer of the settlement site and ancient field, which had been disturbed partly by Modern period pits, trenches, buildings and burials, was observable on the whole site during fieldwork. To explore the nature of this cultural layer, three test pits (1 × 1 m) were dug (Fig. 2, a–c).

The upper part of the layer was disturbed by the formation of thick sand dunes that covered the settlement site. The settlement site’s cultural layer was black or grey coloured and 5–20 cm thick. It contained very fragmentary pieces of local coarseware pottery, stoneware, burnt clay or red brick fragments, some unburnt and burnt animal bones and a few iron finds (nails, calk etc.). Many small pieces of charcoal were also collected.

Table 1. Osteological age, sex and pathologies of the recorded skeletons from J. Kunderi and F. R. Kreutzwaldi streets, Tallinn burial site.

<table>
<thead>
<tr>
<th>Burial no</th>
<th>Sex /</th>
<th>Age /</th>
<th>Pathologies /</th>
<th>Statue /</th>
<th>Kehakasv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matuse nr</td>
<td>Sugu</td>
<td>Vanus</td>
<td>Patoloogiad</td>
<td>Kehakasv</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>♂</td>
<td>40+ y/a</td>
<td>Ankylosis of the 3rd and 4th cervical vertebrae, spondylosis of the 3rd, 4th, and 5th thoracic vertebrae, Schmorl’s nodules on the 7th thoracic and 1st, 2nd, and 3rd lumbar vertebrae.</td>
<td>163.7 ± 3.27 cm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>♂</td>
<td>25–40 y/a</td>
<td>Spondylosis of the 4th, 5th, 6th and 7th thoracic vertebrae, Schmorl’s nodules on the 7th, 9th, and 10th thoracic vertebrae, sinusitis in the maxillary sinuses. Teeth: slight dental calculus, remarkable alveolar reduction, dental caries, ante mortem tooth loss, dental enamel hypoplasia.</td>
<td>155.1 ± 3.72 cm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>♂</td>
<td>25–40 y/a</td>
<td>Schmorl’s nodule on the 8th thoracic vertebra, healed trauma on the distal part of the right 1st metacarpal.</td>
<td>172.1 ± 3.27 cm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>♀</td>
<td>40–50 y/a</td>
<td>Osteoarthritis of the shoulders, hips, and knees, spondyloarthrosis on the 1st and 2nd cervical vertebrae, osteochondrosis on the 5th, 6th, and 7th cervical vertebrae, spondylosis on the 4th, 5th, 6th, 7th, and 12th cervical and 1st and 2nd lumbar vertebrae, Schmorl’s nodules on the 6th, 7th, 8th, and 12th thoracic vertebrae. Teeth: remarkable alveolar reduction, dental caries, periapical lesion, ante mortem tooth loss.</td>
<td>158.3 ± 3.72 cm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>?</td>
<td>Adult /</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>♂</td>
<td>35–45 y/a</td>
<td>Teeth: slight dental calculus, medium alveolar reduction, dental caries, periapical lesions, ante mortem tooth loss, dental enamel hypoplasia.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>♂</td>
<td>14–18 y/a</td>
<td>Scoliosis of the 4th, 5th, 6th, 7th, and 8th thoracic vertebrae. Teeth: lower left PM2 abnormal eruption, dental enamel hypoplasia.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>♀</td>
<td>18–25 y/a</td>
<td>Schmorl’s nodules on the 9th and 12th thoracic and 1st lumbar vertebrae, spondylolysis on the 5th lumbar vertebra. Teeth: medium dental calculus, lower right 11 and 12 abnormal eruption, dental enamel hypoplasia.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>♂</td>
<td>18–21 y/a</td>
<td>6th lumbar vertebra, Schmorl’s nodules on the 8th, 9th, 10th, 11th, and 12th thoracic and 1st, 2nd, and 3rd lumbar vertebrae. Teeth: slight dental calculus, dental enamel hypoplasia.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>♂</td>
<td>25–40 y/a</td>
<td>Periostitis on the tibiae and fibulae, os trigonum of the left talus, sacralization of the 5th lumbar vertebra.</td>
<td>158.3 ± 3.72 cm</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>♂</td>
<td>25–35 y/a</td>
<td>Periostitis on the distal parts of the femora and on the tibiae and fibulae, healed fracture on the body of the right 11th rib, healed fracture on the proximal part of the left 1st metacarpal, spondylosis of the 3rd, 4th, 5th, 7th, 10th, and 12th thoracic and 1st, 2nd, and 3rd lumbar vertebrae. Teeth: slight dental calculus, remarkable alveolar reduction, dental caries, periapical lesions, ante mortem tooth loss, dental enamel hypoplasia.</td>
<td>168 ± 3.27 cm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>♀</td>
<td>40+ y/a</td>
<td>Periostitis on the tibiae and right fibula, spondylosis of the 5th, 6th, and 11th thoracic vertebrae. Teeth: slight dental calculus, dental caries, abnormal eruption of the mandibular incisors and canines.</td>
<td>158.5 ± 3.72 cm</td>
<td></td>
</tr>
</tbody>
</table>
Based on the recovered 4 sherds of imported pottery (Rhenish stoneware: SIEG3a, Brühl, LANG2; Lower Saxon stoneware: LASX3, identification is based on Russow 2006), dated between the end of the 13th century and the first half of the 15th century, the cultural layer was dated to the medieval period. Most notable was the absence of redware in this layer.

Extensive plough marks were preserved under the cultural layer of the settlement site (Fig. 11). The criss-cross, mostly E–W and N–S-directional plough marks point to the use of a hook ard. During fieldwork it was impossible to determine if the field had been farmed before or after the settlement site was abandoned. There is no argument in favour of either. When dealing with a thinner cultural layer it is possible to plough through and into the subsoil, but it is unlikely with thicker layers as seen in at least some areas of the site. This would seem to indicate that the field is older than the settlement site. The fragmentation of finds could be indicative of ploughing through the settlement site and so the field could be much younger, which seems more likely. But this again is just speculation as there is no empirical evidence in Estonia about the effects of ploughing on pottery and other finds. Small objects are also predominant in places that have never been ploughed but intensely trampled. For now, the ancient field remains undated, but in any case it was used before the formation of the sand dune, which in turn had to happen before the 18th century.7

DISCUSSION AND CONCLUSIONS
After the Great Northern War, the suburbs of Tallinn began to rapidly expand as a result of the construction of Orthodox churches and military campuses (Üprus 1976, 381). This caused the continued use of the burial ground at J. Kunderi and F. R. Kreutzwaldi streets. During this period, the percentage of Russians was highest in the suburbs (Pullat 1976, 339) and many of them were soldiers (Pullat 1992, 18). The higher sandy areas and dunes located in and near the Tallinn suburbs were often used as burial grounds in the Early Modern period since they were not suitable for neither farming nor construction. It was not until the town expanded and the nearby plots were already occupied, when the previously unsuitable locations were taken into use. Not only have burials dated to the 18th century been discovered on the J. Kunderi street and F. R. Kreutzwaldi street burial site, but burials from the Swedish period

7 The question of the relation between the settlement site and ploughing, and also the dating of the plough marks might be answered with the concluding excavations (see footnote 1). However, since the archaeological report has not been finished at the time of writing the present paper we do not possess the required data to be able to offer an answer to this problem.
have been found. Similarly to the cemetery at Pärnu Road 59b, Tallinn (plague graves in Liivamäed; Laane 2002, 34) which was used to bury plague victims in both single and collective graves (Malve & Juus 2018, 40), it is possible that the burial site was also already founded in the 16th–17th century. After the Great Northern War the site was used as an Orthodox burial ground. The observed pathologies are characteristic to Early Modern period cemeteries. No signs of violence were found of the skeletons and this indicates that this was a peacetime burial site.

Based on historical town maps, the C. R. Jakobsoni St. 13 plot as well as the nearby plots were used as meadows or farming land as late as the 17th century (Malve & Reppo 2018, 2). On a map from 1825, C. R. Jakobsoni street has been depicted with suburb plots: there are some buildings with gardens (RGVIA.349.Revel.631) and barracks south-west of the area. The barracks are also depicted on a map from 1856 and north-west of them is an empty sandy area (Raid 2011, map 27). Buildings are erected only at the end of the 19th century and the start of the 20th century.

Bones and skeletons presenting with craniotomy have been found from other post-Great Northern War cemeteries dating from the 18th century: Tallinn Cemetery of the Navy and Land Forces’ Hospital, Haapsalu gallows hill (Malve et al. 2015) and Tönismäe cemetery (Malve 2017, 42). No skeletons with signs of autopsy dating from earlier periods have been found. All skulls presenting with craniotomy that have been found in Estonia date from the 18th century. The annexation of Estonia by the Russian Empire brought with it medical progress and craniotomies were conducted by surgeons working at the garrison hospitals. At first it was allowed to conduct autopsies only on criminals and those who had committed suicide. One of the autopsied skeletons discovered at Haapsalu gallows hill belonged to Rein Buxhöveden who hanged himself in 1798 and was autopsied before his burial (Malve et al. 2015, 206). Based on this, it is possible that the skull discovered at J. Kunderi and F. R. Kreutzwaldi street burial site belonged to a criminal or a prisoner of war. In 1938, two skeletons were discovered in Kadriorg (specific location is not known) (Russow in prep., cat. no TLN1938.08) that were joined with handcuffs. It is possible that they were also buried at the same cemetery.

The medieval settlement site and ancient field located near town is undoubtedly an interesting find. Medieval settlement sites and fields are not rare in Estonia, but one buried under a sand dune is quite exceptional. Earlier sites have usually been disturbed by later activity but in this case the probably short-lived settlement site has remained undisturbed. There are a few similarly buried sites and fields in Estonia, the best comparison being Jägala Jõesuu and Jägala-Joa in northern Estonia. There sand dunes also covered numerous settlement sites from different time periods ranging from the Stone Age up to the Viking Age (Kriiska et al. 2009; Kriiska & Sikk 2014). Many buried fields have also been found in NW Saaremaa (Lõugas 1980, 54).

The overall picture of fields in Tallinn and Jägala regions is quite similar, pointing to the fact that sandy coastal areas were suited for farming during the prehistoric as well as the medieval period. These kinds of sandy soils were also ideal for farming in neighbouring countries (e.g. Carlsson 1979, 163; Mikkola et al. 2016, 149). Similarly, Tallinn, Jägala and northwestern Saaremaa regions seem to have experienced a natural disaster – the extensive movement of sand dunes that buried human habitations that were used up to that point. This is probably the direct result of intensive land cultivation in coastal areas with hazard of dune formation.
ACKNOWLEDGEMENTS
This paper has been supported by research projects of the Estonian Research Council IUT20-7 and IUT18-8, by the Estonian Research Council grant no PRG29 and OÜ Arheograator. The authors are grateful to everyone who has participated in the excavations and conservation work.

REFERENCES
RA, EAA.854.4.46 Wassermann, F. 1885. Situationsplan der Stadt Reval, herausgegeben vom Technischen Bureau des Stadttams. (Map in RA.)
RA, EAA.1874.1.3545 Rubnikov, I. 1849. Plan города Ревеля. (Map in RA.)
RGVIA.349.Revel.631 = Генеральной плань Ревельской Кръплости съ показанiem Городскихъ строений. 1825. (Map in Russian State Military History Archives.)
Štšogoleva, J. 2012. Liivi sõja aegse vene sõjaväe arheoloogilised jäljed Eesti linnades ja linnustes. Tartu. (Manuscript in TÜAK.)

Kogu avatud alal olid uusaegseste asustuslülidest ja matustest ning kuni 1 m päksnes liivaleitse all 5–20 cm päksne asulakogu kultuurihiik, mida paigutati lühikusid uusaegsed sissekaevad, hoonestus ja matused. Kihi ülaosa oli mõnevõrra segatud liivaleitse kaitse ning suurel osal säilinud savinõukilde, põlenud savi- ja tellisetükke, miski kahjulikult säilinud savinõukilde, põlenud savi- ja tellisetükke, kaks (Tabel 1), ülejäänud olid saanud kannatada metalldetailid.

Kogu avatud alal olid uusaegseste asustuslülidest ja matustest ning kuni 1 m päksnes liivaleitse all 5–20 cm päksne asulakogu kultuurihiik, mida paigutati lühikusid uusaegsed sissekaevad, hoonestus ja matused. Kihi ülaosa oli mõnevõrra segatud liivaleitse kaitse ning suurel osal säilinud savinõukilde, põlenud savi- ja tellisetükke, miski kahjulikult säilinud savinõukilde, põlenud savi- ja tellisetükke, kaks (Tabel 1), ülejäänud olid saanud kannatada metalldetailid.

Kogu avatud alal olid uusaegseste asustuslülidest ja matustest ning kuni 1 m päksnes liivaleitse all 5–20 cm päksne asulakogu kultuurihiik, mida paigutati lühikusid uusaegsed sissekaevad, hoonestus ja matused. Kihi ülaosa oli mõnevõrra segatud liivaleitse kaitse ning suurel osal säilinud savinõukilde, põlenud savi- ja tellisetükke, miski kahjulikult säilinud savinõukilde, põlenud savi- ja tellisetükke, kaks (Tabel 1), ülejäänud olid saanud kannatada metalldetailid.
eemaldusid kiiruluud peaaegu täielikult ja suuremas osas ka kukla- ning otsmiku luud. Kolju oli avatud kõl-

taltki ühtlaselt, mis viitab kogenenud praktiseerijale. Kraniotoomia viidi läbi tõenäoliselt mehe surma põh-

juse uurimiseks.

Pärast Põhjasõda hakkasid Tallinna eeslinnad seoses sõjaväelinnakute ja õigeusu kirikute rajami-

sega hoogsalt laienema, selle käigus jättis matmine ka J. Kunderi ja F. R. Kreutzvaldi tänavate piirkonnas

paiknevalle matmispaigale. Venelaste osakaal oli tollal suurim just eeslinnades, nende seas oli rohkelt sõja-
väelasi. Tallinna eeslinnadesse ja nende kõrvala jä-
nud liivaseid kõrgemaid alasid ning luiteid kasutati

itiipide varauusalas ja matmispaikadena, kuna need ei sobinud põllu- ega ehitusmaaks. J. Kunderi ja F. R.

Kreutzvaldi tänavate piirkonnas paiknevalt matmis-

paigalt ei ole avastatud ainult 18. sajandist pärinevaid

hauud, vaid ka rootsi- ja maa-egeseid matuseid 16.–17. sajan-

dist. Võimalik, et õigeusu matmispaik kujunes siis

alates 1710. aastast – sarnaselt Tallinna Pärnu mnt 59b

kalmistuga (katkuhauad Liivamägedes), kuhu sängi-

tati katku surnuid üksik- ja ühishaudadesse ning

hiljem maeti sinna eeslinna kolinud vene õigeusu

cogukonda. J. Kunderi ja F. R. Kreutzvaldi tänavat piir-

konnast leitud skeletidel tuvastatud patoloogiad on

omased varauusaegsetele kalmistutele, neil puudu-

sid vägivalla tunnused ja seetõttu võib öelda, et leitud

hauud puhul on tegemist rahuaja matmispaigaga.

Kraniotoomiaga luid ja skelette on leitud ka teistelt

Põhjasõja järgsetelt matmispaikadel: Tallinna Mere-

ja maaväehospidalikalmistult, Haapsalu võllamäelt

ja Tõnismäe kalmistult. 18. sajandi eelsest ajast seni

ühtegi lahkamistunnustega skeletist leitud pole. Eesti

alade liitmine Vene tsaaririigiga tõi kaasa ka medit-

siini arengut, käesolevaid protsedure viisid läbi gar-

nisonide juures hospitalis töötanud kirurgid. Esialgu

vöis lahata vaid kurjategijaid ja enesetapjaid. Seega

on võimalik, et J. Kunderi ja F. R. Kreutzvaldi tänavate

piirkonnas paiknevalt matmispaigalt leitud kolju kuu-

lus näiteks mõnele sõjavangile või kurjategijale.